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Abstract—This paper aims at exploring the variety of Elec-
trocardiogram(ECG) interval and amplitude during different
bathtub water temperature and eliminating their influence on
personal identification with ECG. There are 10 subjects in
the experiment, each subject collects 2 ECG recordings, each
recording is at least 220 s. One recording is collected at 38±0.5 ◦C
bathtub water temperature and the other recording is collected
at 42±0.5 ◦C bathtub water temperature. All the raw ECG
are removed baseline drift and normalized, then the R peaks
are detected and all the R-R interval(RRI) and amplitude are
calculated. Through statistical analysis method, we find that the
median of RRI in low bathtub water temperature is bigger than
in high bathtub water temperature for all subjects, and compared
with low bathtub water temperature, the variety of R peaks
amplitude has 3 situations in high bathtub water temperature:
increase, decrease and unchanged. Then all the QRS complex
are segmented and are taken as training data and test data.
During the training stage, there are 3340 training datasets, 1670
training datasets are from low bathing water temperature and
the other 1670 training datasets are from high bathing water
temperature. In the testing stage, first we use 410 testing data
which are from low bathtub water temperature to test the trained
model, the best and robust identification rate is 87.07%, when
we use the other 410 testing data which are from high bathtub
water temperature to test the trained model, the best and robust
identification rate is 87.32%. To the best of our knowledge, this
is the first time to explore the variety of ECG interval and
amplitude during different bathing water temperature. However,
further improvements are still needed during different bathing
environment.

Index Terms—ECG, interval, amplitude, influence, identifica-
tion

I. INTRODUCTION

Hot spring and bathing are very popular in Japan. However,
due to the increasing aging population, there are more and
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more drowning accidents these years among some old people
with heart diseases. The heart rate and ECG vary greatly before
and after one person entering the bathtub, the main reason
is the stimulation which is caused by hot water. If we can
monitor the dynamic changes of heart rate and ECG in real-
time during bathing and predict the health status, it will be
helpful to reduce the drowning accidents. However, firstly we
should know who is in the bathtub during bathing, so how
to perform personal identification with ECG during bathing is
the primary work we should do.

ECG is the electrical activity of the heart, the normal ECG
waveform includes 3 main components: P wave, QRS complex
and T wave, the details are shown in Fig. 1. P wave represents
the depolarization of the atria, QRS complex represents the
depolarization of the ventricles and T wave represents the
repolarization of the ventricles[1]. Traditional measurement
methods are usually placing several electrodes on the skin, it
is noninvasive and convenient, which has become a standard
tool in the daily clinical diagnosis for some cardiac diseases.

Fig. 1. Main components of the normal ECG waveform.

Because it exists in all the living creatures and has its
unique characteristics, since L. Biel et al. investigated a new



approach for human identification with ECG during rest in
1999 [2], then more and more research in recent years regards
ECG as a new biomedical personal identification tool [3–
17]. Many previous published papers explored how to perform
identification with ECG and achieved good results, however,
only a few papers used bathtub ECG, and almost none papers
explored the variety of ECG interval and amplitude during
different bathtub water temperature.

In our previous study, we found that different bathtub water
temperature had an important impact on personal identifica-
tion. This paper aims at exploring the variety of ECG interval
and amplitude during different bathtub water temperature and
eliminating their influence on personal identification with
ECG, and finally performing personal identification with ECG
quickly and accurately in different bathtub water temperature.
The final personal identification rates are 87.07% in low
bathtub water temperature and 87.32% in high bathtub water
temperature using the QRS complex of the ECG signal during
bathing.

The rest of this paper is organized as follows: Section
II gives the methods and materials, section III presents the
results, and discussion and conclusion are proposed in Section
IV and Section V respectively.

II. METHODS AND MATERIALS

A. Data collection system

The data collection system is shown in Fig. 2. There are
4 non-contact electrodes in the bathtub, which are placed
near the right foot, right arm, left foot and left arm respec-
tively, where one of the non-contact electrodes near right
foot connects to ground. Lead I is the potential difference
between the left arm and right arm, lead II is the potential
difference between the left foot and right arm, and lead III
is the potential difference between the left arm and left foot.
The electricity arrives in the non-contact electrodes through
the water, the non-contact electrodes and ECG amplifier are
connected by a line, ECG amplifier is used to amplify the tiny
potential difference until it can be recorded and observed. The
ECG amplifier and computer are connected by Wi-Fi, all the
collected data are stored in the computer ultimately.

Fig. 2. Data collection system.

B. Subjects and ECG collection

There are 10 subjects in our experiment, including 5 males
and 5 females, aged between 20 to 25 years old, the sampling
rate of the data collection system is 100 Hz. During the data
collection stage, first, we control the bathtub water temperature
at 38±0.5 ◦C and record the ECG. After 220 s, we increase
the bathtub water temperature to 42±0.5 ◦C and continue to
record the ECG until the length of recording is more than 220
s.

C. Data processing and analysis

The collected data are segmented into 2 parts: 38±0.5 ◦C
recording and 42±0.5 ◦C recording. For every recording, we
use 220s data which belong to Lead II to do analysis.

In order to remove the baseline drift (low-frequency com-
ponent), we use the ’db6’ wavelet at level 4 to decompose the
signal, then we reconstruct the signal using the function of
’waverec’ after we subtract baseline drift (the final approxima-
tion coefficients) from the original signal and offset removed
baseline, one of the output is shown in Fig. 3.

Then we normalized the preprocessed data into the range of
0 to 1 using the ’mapminmax’ function, the equation is shown
in (1):

y =
x− xmin

xmax − xmin
(1)

where x is the input data, y is the output data, xmax is the
maximal value of the input signal row vector, xmin is the
minimal value of the input signal row vector.

Next, all the R peaks are detected by the function of
’findpeaks’, where the ’MinPeakProminence’ is 0.42. Then all
the RRI and amplitude of R peaks are calculated, the details
are shown in Fig. 4 and Fig. 5, where A to J represents
every subject respectively, L represents 38±0.5 ◦C bathtub
water temperature and H represents 42±0.5 ◦C bathtub water
temperature.

Figure 4 shows that the median of RRI in low bathtub water
temperature is bigger than in high bathtub water temperature
for every subject. Figure 5 shows that compared with low
bathtub water temperature, the variety of R peaks amplitude
has 3 situations in high bathtub water temperature: the median
of R peaks amplitude is obviously increasing for subject A,
F, G, and J, and the median of R peaks amplitude is almost
unchanged for subject B, D and H, however, the median of R
peaks amplitude is obviously decreasing for subject C, E and
I.

D. Data structure and CNN model design

Centering on the detected R peaks, we take 13 sampling
points forward and 14 sampling points backward, we can
segment the QRS complex, it is a 1×28 one-dimensional array.

For every subject, we select 235 QRS imaging respectively
in each bathtub water temperature, taking 1st to 28th QRS as
the first dataset and 2nd to 29th QRS as the second dataset,
then we can get 208 datasets, selecting 167 (about 80%)



Fig. 3. Process of the ECG decomposition and reconstruction.

Fig. 4. Comparison of RRI in different bathtub water temperature.

Fig. 5. Comparison of R peaks amplitude in different bathtub water temper-
ature.

Fig. 6. 28 1D QRS complex to 2D QRS imaging.

datasets as the training data and 41 datasets (about 20%) as
the testing data, one of the datasets is shown in Fig. 6.

Then, all the training data and testing data are put to-
gether respectively. At last, the size of data−training−L and
data−training−H are 28×28×1670 3D array, the size of
data−testing−L and data−testing−H are 28×28×410 3D ar-
ray. We use 1 to 10 to mark every subject respectively, both of
the Labels−training−L and Labels−training−H are a 1670×1
2D array, and the Labels−testing−L and Labels−testing−H are
a 410×1 2D array.

There are 5 layers in the designed CNN model, the details
are shown in Fig. 7.

In the input layer, the input data is a 28×28 grayscale. In
the convolution layer, after performing convolution operation
with 20 3×3 filters, the subsampling result is a 26×26×20
3D array. In pooling layer, the downsampling result is a
13×13×20 3D array. In the hidden layer, using fully connected



Fig. 7. CNN model.

method. In the output layer, using ’softmax’ function to cal-
culate the identification rate. There are 10 values in the output
of ’softmax’ function, every value indicates the possibility of
every subject. If the row of the maximum of these 10 values
in the ’softmax’ function is same with the label of the input
data, then let the accuracy increased by 1.

III. RESULTS

During the training process, before we performing
data training, we firstly put the data−training−L and
data−training−H together, and also put the Labels−training−L
and Labels−training−H together, then we can get
Data−training−all and Labels−training−all, and rearranging
the order of Data−training−all and Labels−training−all.

During the testing process, first, we use data−testing−L to
test the trained CNN model, the best and robust identification
rate is 87.07%, and when we use data−testing−H to test the
trained CNN model, the best and robust identification rate is
87.32%, the varieties of accuracy in the above 2 test processes
are shown in Fig. 8.

IV. DISCUSSION

In our previous experiment, when we use the data which
is collected in low bathtub water temperature (38±0.5 ◦C) to
train and test the CNN model, the best and robust identification
rate is 82.67%. However, if we use the data which is collected
at high bathtub water temperature (42±0.5 ◦C) to test this
trained CNN model directly, the identification rate is only
13.33%.

Similarly, if we use the data which is collected in high
bathtub water temperature (42±0.5 ◦C) to train and test the
CNN model, the best and robust identification rate is 85.50%.
However, if we use the data which is collected at low bathtub
water temperature (38±0.5 ◦C) to test this trained CNN model
directly, the identification rate is only 12.17%.

In this paper, we explore the variety of RRI and amplitude
of ECG during different bathtub water temperature using
statistical analysis and find that the variation trend of RRI is
definite, that is the median of RRI declines with the bathtub
water temperature increasing. However, the variety of R peaks
amplitude is uncertain in different bathtub water temperature:
with the bathtub water temperature increasing, the median of
R peaks amplitude is obviously increasing for subject A, F,
G, and J, and the median of R peaks amplitude is almost

Fig. 8. Varieties of accuracy in testing process.

unchanged for subject B, D, and H, however, the median of R
peaks amplitude is obviously decreasing for subject C, E and
I. These varieties of RRI and amplitude further confirm the
credibility of the experimental result in our previous paper.

In order to eliminate the influence of bathtub water tem-
perature on personal identification with ECG, in this paper,
the training data includes 2 parts, one half is collected in low
bathtub water temperature (38±0.5 ◦C) and the other half is
collected in high bathtub water temperature (42±0.5 ◦C). In
the final testing stage, first, we use data−testing−L to test the
trained CNN model, the best and robust identification rate is
87.07%, and when we use data−testing−H to test the trained
CNN model, the best and robust identification rate is 87.32%.

V. CONCLUSION

In this paper, we explore the RRI and amplitude of ECG
during different bathtub water temperature using statistical
analysis method, the median varieties of RRI and amplitude
preliminarily interpret the reason of the impact of bathtub wa-
ter temperature on personal identification with bathtub ECG.
The experimental results in this paper suggest that the designed
CNN model can successfully perform personal identification
with ECG at least in 2 different bathtub water temperature.
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